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This appendix provides the details of the applications of Cramer’s rule used in the proofs
of propositions 1 and 2.

Proof of Proposition 1
(a) Note that
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so that A - ¢* = b has a unique solution. Without loss of generality, let us compute the
solution ¢3;. We need to compute the determinant of the matrix obtained by replacing
the first column of matrix A by the vector with components (v{® — dvf® +n —1+0)/2.
Let us denote this matrix by Ab;. To ease notation, let us write b; to indicate each
(v{® = 0vf® +n —146)/2, j # 1, so that b = (ba,...,b,). Then, notice that
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As for the last determinant in the expression above, note that
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Then, using the expression of each b;, j # 1, we obtain
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Application of Cramer’s rule gives us
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To compute any relative price ¢j;, j # 1, one must follow an argument analogous to
the one above. Hence, there is a unique SPE s* for the game I'(gs, M) such that any
peripheral agent 7 # 1 charges a relative price
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to the central agent (agent 1) in the star network.



(b) Note that
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so that A - ¢** = b has a unique solution. Without loss of generality, let us compute the
solution ¢37. We need to compute the determinant of the matrix obtained by replacing
the first column of matrix A by the vector with components (6v{® —v{* +1+ (n —1)d)/2.
Let us denote this matrix by Ab;. To ease notation, let us write b; to indicate each
(v® = 0v® +n —140)/2, j # 1, so that b = (ba,...,b,). Then, notice that
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As for the last determinant in the expression above, note that
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Then, using the expression of each b;, j # 1, we obtain
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Application of Cramer’s rule gives us
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To compute any relative price ¢jj, j # 1, one must follow an argument analogous to
the one above. Hence, there is a unique SPE s* for the game I'(gs, M) such that any

peripheral agent 7 # 1 charges a relative price
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to the central agent (agent 1) in the star network.

Proof of Proposition 2
We proceed by induction to obtain |A,_;|. First, note that
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Also, it can be verified that, for each m > 3,
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Therefore, by proposing |A4,,| = "7, §7, we obtain

m m m—1
\Am+1|—(1+5z —5253 26J+5(251—Z(5ﬁ>
j=0 j=0 j=0 ]
m+1

= iaﬂ‘ +o5m =)o
=0 j=0

It follows that |A, 1| = Z;.l;ol §7. Thus, the linear system A,_;-¢* = b above has a unique
solution. We apply Cramer’s rule to solve this system.

To compute each solution ¢, i=1,...,n—1, we replace the ith column of matrix

i(i41)’
A,,_1 with vector b. Let us denote the matrix obtained in this way by Ab;. To compute
the determinant |Ab;| we use the cofactor expansion along the ith column of matrix Ab;.

It can be checked that
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Hence, there is a unique SPE s* for the game I'(gr,, M) such that each agent i = 1,...,n—1
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along the line charges the relative price i) above to agent 7 + 1.



