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1 Introduction

In many economic and social settings, agents acquire information from others in order

to improve their knowledge of the underlying fundamentals. For example, a researcher

acquires information from colleagues in order to improve his knowledge of a certain sci-

entific problem and of the possible alternatives to address it. Also, it is common that

investors in a new sector acquire information from other investors to obtain more accu-

rate predictions of the economic variables affecting the profitability of the sector. Most

of these information acquisition activities often take place through networks.

Despite the widespread use of information acquisition within networked groups, little is

known about this phenomenon. How do agents interact with respect to their information

acquisition decisions when they are connected through a network? How is the compat-

ibility between efficient and equilibrium information acquisition related to the network

architecture? To address these questions, this paper provides a game theoretical frame-

work that treats the transmission of information as a result of a Bayesian belief revision

process.

In this model, the architecture of the network is exogenously given and common knowl-

edge, and agents are engaged in a two-stage game. In the first stage, each agent chooses

at a cost the amount of information that he acquires from his neighbors. In the second

stage, each agent chooses a payoff-relevant action. Agents are able to receive information

only from their direct neighbors, so that I do not consider the network effect which forms

an essential part of most of the analyses of communication networks.

This model is built on the assumption that, when the agents choose the amount of

information that they acquire, they correctly anticipate and compute the extent to which

the newly acquired information will change their perceptions of their own future expected

payoffs. This assumption constitutes the crucial sequential rationality requirement of the

equilibrium concept proposed in this paper, information acquisition equilibrium (IAE).

The IAE concept requires that each agent be sequentially rational in both stages of the

underlying game and that posterior beliefs be consistent, according to Bayes’ rule, with

the strategies over messages chosen in the first stage. Thus, IAE requirements seem

analogous to those of perfect Bayesian equilibrium. In fact, IAE departs from perfect

Bayesian equilibrium only in the way in which the agents compute their expected payoffs

in the first stage. In an IAE, an agent’s expected payoff in the first stage is specified

by discounting his expected payoffs at the various information sets in the second stage

according to the combination of strategies over messages chosen by the agents. Given this

specification, when an agent changes his information acquisition choice at the first stage,

he is able to compute the extent to which his own perception of his payoff in the second
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stage will change.

The motivation for this key sequential rationality requirement of IAE has a behavioral

nature and clearly contrasts that of perfect Bayesian equilibrium, the equilibrium concept

usually proposed to analyze information revelation decisions. In signaling1 and cheap

talk2 models, an agent who decides about information revelation cares about the action

that he induces the receiver to take rather than about any changes on his own posterior

beliefs.3 However, when an agent decides about acquiring new information, it seems rea-

sonable to assume that he anticipates the self-induced changes on his posterior beliefs and

the extent to which such changes will affect his perception of own future payoffs. Then, it

seems appropriate to consider that, at the date when the agent decides about information

acquisition, he cares about both the induced optimal actions and the anticipated percep-

tion of his own future payoffs. The nature of the problem of information acquisition seems

different from that of information revelation. This paper proposes an equilibrium concept

suitable to incorporate into the agents’ rationality the fact that they anticipate the role

of the acquired information in shaping their own posterior beliefs and, accordingly, their

own perceptions of future expected payoffs. For the two-agent version of the underlying

game, we can simplify an agent’s expected payoff in the first stage as it is specified in

an IAE so as to obtain the expected payoff used in a perfect Bayesian equilibrium. This

shows that both concepts of equilibrium coincide for the two-agent case. However, they

turn out to be different equilibrium concepts for the case with more than two agents.

Regarding preferences, I adopt a particular choice which seems reasonable to study

information acquisition within groups. In this model, a sender cannot decide about the

amount of information that he discloses to his neighbors. Therefore, strategic interactions

over actions are ruled out. Each agent’s payoff depends on the appropriateness of his own

action to the underlying state. In addition, an agent’s payoff decreases with the distance

between the others’ actions and the state—this is the way in which positive “informational

spillovers” are formalized. Also, to render the analysis tractable, I assume that payoffs

are quadratic.

The main motivation for the assumed preferences comes from organizations or groups

where their members face similar problems which they must solve independently, and

where each of them wishes to solve his problem but also values that the other agents solve

theirs too. Clearly, in this framework no agent has incentives to refuse to transmit his

1See, e.g., Spence [20], Rothschild and Stiglitz [19], and Wilson [23].
2The seminal work on cheap talk is due to Crawford and Sobel [11].
3In fact, the study of posterior beliefs and perceptions of the agent who decides about information

transmission is not the purpose of these sender-receiver models since they assume that the receiver is
completely informed about the underlying state.
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information to others so that the analysis of information revelation decisions is irrelevant.

Then, we can aptly restrict attention to information acquisition decisions. Examples

of such groups or organizations are those of a research department, where its members

pursuit independently similar innovations, or a group of investors in a new sector, where

the profitability of the sector increases as more investors choose investment strategies

appropriate to the underlying state.

To study the efficiency properties of information acquisition through a network, I

consider that the planner seeks to maximize the sum of the ex ante payoffs of the agents.

Proposition 1 provides the following necessary and sufficient condition for an information

acquisition profile to be efficient: it is efficient to acquire full information from a given

neighbor if and only if the cost of information acquisition does not exceed the variance

of the neighbor’s type. Otherwise, it is efficient to acquire no information at all from

that neighbor. Not surprisingly, this result gives us an efficiency criterion in terms of the

marginal cost and the marginal benefit derived from information acquisition.

The second result of this paper characterizes an agent’s best response information

acquisition strategy with respect to a given neighbor. Proposition 2 shows that the

incentives of an agent to acquire information from a neighbor increase with the amount

of information that the rest of neighbors of that neighbor acquire from him.

Both the sequential rationality requirement at the first stage of the underlying game

imposed by the IAE notion and the presence of positive informational spillovers are crucial

to obtain the result that agents wish to coordinate their information acquisition decisions.

The following example illustrates the forces behind this result. Consider three agents such

that agent 1 is linked to agent 2 and agent 2 is linked to agent 3. We are then encouraged

to ask what forces cause agent 1’s decision about information acquisition from agent 2 to

depend on agent 3’s choice about information acquisition from agent 2. Agent 1 knows

the strategy over messages that agent 2 adopts with respect to agent 3 (which is indeed

chosen by agent 3). However, so long as he does not acquire full information from agent

2, he is still uncertain about agent 2’s type. As a consequence, he is also uncertain about

the particular message that agent 2 sends to agent 3. In other words, the information that

agent 1 acquires from agent 2 improves his knowledge about 2’s private information but

also about the extent to which agent 3 acquires information from agent 2. Therefore, this

information also changes his perception of the extent to which agent 3 is able to solve his

problem. Then, by changing his information acquisition decision with respect to agent 2,

agent 3 changes the relation between agent 1’s information acquisition choice with respect

to agent 2 and agent 1’s own (anticipated) perception of agent 3’s most preferred action.

This affects agent 1’s information acquisition choice with respect to agent 2 given that (i)
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information acquisition is costly, (ii) agent 1 cares about agent 3’s action, and (iii) agent

1 is risk averse with respect to agent 3’s action.

Regarding its welfare implications, this paper provides conditions in terms of a pre-

cise measure of the network density—the minimum degree of the network—under which

efficient information acquisition can be either reached in an IAE or not. These results,

provided by Corollaries 1 and 2, suggest that it is more likely that the IAE be efficient

when the least connected agent is highly connected relative to the size of the entire group.

To the best of my knowledge this paper is the first to conduct an analysis of strategic

information acquisition decisions and their welfare implications for networked groups. For

networks that allow for communication among connected agents, Jackson and Wolinsky

[15], and Bala and Goyal [4] pioneered the study of the compatibility between efficient and

equilibrium networks.4 For tractability reasons, most of this literature do not consider the

information transmission problem in terms of a Bayesian belief revision process. Instead,

certain given relations are assumed between an agent’s payoff and the number of agents

whose information he can access. By doing so, the effects of information on payoffs are

exogenously modeled and the role of information in shaping beliefs is ignored.

Recently, some papers have analyzed communication networks using Bayesian belief

revision processes to model information transmission. Calvó-Armengol and de Mart́ı [8]

consider a framework where agents communicate through a given network as a result

of a Bayesian belief revision process that takes place in successive rounds. The main

differences between their approach and that followed in this paper are: (i) they do not

consider endogenous information transmission decisions, and (ii) the class of preferences

that they assume include a second-guessing coordination motive. Hagenbach and Koessler

[13] consider a model where each agent decides whether or not to reveal his private

information to the others before choosing his own action. The choices on information

revelation determine endogenously a communication network. The main difference with

this paper is in the fact that they study information revelation decisions. Consequently,

they use perfect Bayesian equilibrium as solution concept. Perfect Bayesian equilibrium

is arguably an appropriate equilibrium concept for that problem. As a result, they do not

obtain strategic interactions over information transmission decisions at equilibrium. This

marks a sharp contrast with the results of this paper.

The rest of the paper is structured as follows. The model and the notions of equilibrium

and efficiency are introduced in Section 2. Section 3 characterizes both the set of efficient

and the set of equilibrium information acquisition profiles, and presents the results that

4The line of research on communication networks has been pursued further in different contexts,
among others, by Suk-Young Chwe [21], Calvó-Armengol [7], Bloch and Dutta [5], Calvó-Armengol and
de Mart́ı [8], and Calvó-Armengol and Jackson [9].
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relate the compatibility between equilibrium and efficiency to the network density. In

Section 4, I discuss the robustness of the model. Formal justifications are provided by

considering two perturbations of the model: one where types are drawn according to a

Normal distribution and each agent receives a signal consisting of the true type plus some

noise; the other with non-linear information acquisition costs. Section 5 concludes with

a discussion of the results. The proofs of all the propositions are grouped together in the

Appendix.

2 The Model

2.1 Network Notation

There is a finite set of agents N := {1, . . . , n}, with n ≥ 2. The shorthand notation5

ij denotes the subset of N , of size two, containing agents i and j, which is referred to

as the link ij. A communication network g is a collection of links where ij ∈ g means

that i and j are directly linked and able to acquire information from each other under

network g. Let G denote the set of all possible networks on N . For a network g ∈ G, the

set of agent i’s neighbors is Ni(g) := {j ∈ N : ij ∈ g} and the number of his neighbors

is ni(g) := |Ni(g)|. Finally, let δ(g) := mini∈N ni(g) and ρ(g) := maxi∈N ni(g) denote,

respectively, the minimum and the maximum degree of network g. Both δ(g) and ρ(g)

can be understood as measures of the extent to which agents are connected in network g.

The architecture of the network itself is exogenously given and common knowledge.

2.2 Information Structure, Actions, and Payoffs

Given a network g ∈ G, agents are engaged in a game that is played in two consecutive

stages numbered 1 and 2. In stage 1, each agent i ∈ N decides the amount of information

that he acquires from each agent in his neighborhood Ni(g). In stage 2, each agent chooses

an action using the information that he has acquired from his neighbors in stage 1.

The initial private information of each agent i ∈ N is described by his type ti, an

element of Ti := [0, 1]. For each variable, set, or function, denote its profile over all agents

by the corresponding bold letter and its profile over all agents except that of agent i with

the corresponding letter with subscript −i.6 A state of the world is denoted t := (ti)i∈N

5The network notation presented here was developed by Jackson and Wolinsky [15].
6This notation is standard. Specifically, for each set Yi with generic element yi ∈ Yi, for some agent

i ∈ N , write Y to denote the Cartesian product ×i∈NYi, and, accordingly, write y := (yi)i∈N ∈ Y
and y−i := (y1, . . . , yi−1, yi+1, . . . , yn) ∈ Y−i. Likewise, for each family of functions hi : Y → Z, write
h(y) := (hi(yi))i∈N and h−i(y−i) := (hj(yj))j 6=i.
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and the state space is7 T := ×i∈NTi = [0, 1]n.8 Thus, agent i’s type is the respective

coordinate ti of the actual state t. All aspects of this game, except t, are common

knowledge. Clearly, this information structure exhibits complementarities in the sense

that two distinct agents improve their knowledge about the underlying state by sharing

their pieces of private information. In particular, the true state is always obtained by

combining the pieces of private information of all the agents.9

Although the proposed information structure relates generally to situations with in-

formational complementarities, the main motivation of this model comes from situations

where agents face independently a common (or similar) decision problem with several

independent “aspects” so that solving the problem requires to solve the various aspects.

Each agent is an “expert” in one aspect so that the knowledge about how to solve the

problem is improved by information sharing.

In stage 2, each agent chooses a payoff-relevant action. An action for agent i is an

n-coordinate vector ai ∈ Ai := [0, 1]n. Thus, the action space available to each agent

i ∈ N coincides with the state space, Ai := T = [0, 1]n. The idea here is to think of

an action as a collection of all the independent steps that an agent must take in order

to solve his decision problem (one step for each aspect of the problem). Let aik ∈ [0, 1]

denote the k-th coordinate of the action vector ai taken by agent i, i.e., ai := (aik)k∈N .

Intuitively, aik summarizes the action taken by agent i with respect to the k-th aspect of

the decision problem.

Under the chosen preferences, strategic interactions over actions are ruled out. Each

agent wishes, on the one hand, to match his own action with the true state and, on the

other hand, is concerned about the extent to which the other agents align their actions

with the true state. I call this second motive the team concern and interpret it as a positive

“informational spillover” or externality affecting the organization/group. I am assuming

that the organization receives higher benefits, either monetary or in terms of prestige, as

more of its members perform “well” in their independent tasks. Thus, contingent on the

performance of the entire organization, each member is rewarded in terms of reputation

or monetary payments. For example, consider a set of investors choosing their investment

strategies in a new sector, where the profitability of the sector increases with the number

of investors that choose a “good” investment strategy. Consequently, each investor cares

about the extent to which the rest of investors align their actions with the true state.

7The proposed state space is similar to those used in models on multidimensional cheap talk. See,
e.g., Chakraborty and Harbaugh [10], and Levy and Razin [17].

8For a set B and an integer l, write Bl to denote the l-fold Cartesian product of B.
9Jiménez-Mart́ınez [16] proposes an analogous information structure to study a two-agent information

sharing problem.
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Of course, a broad class of applications can be covered by this model when one thinks

of the team concern in terms of benefits derived to each agent from the prestige of the

organization.

With regards to the team concern, let r ∈ [0, 1] be a scalar parameter that measures

the extent to which each agent cares about the alignment of the other agents’ actions

with the true state. Let ‖ · ‖ denote the Euclidean norm. The payoff to agent i is given

by the function Ui : A× T × [0, 1]→ R defined by

Ui(a, t; r) := −(1− r)‖t− ai‖2 −
r

n− 1

∑
j 6=i

‖t− aj‖2. (1)

The first term in equation (1) above is the quadratic loss in the distance between agent

i’s own action and the true state. The second term is the team concern, i.e, the payoff

loss derived from the discrepancy between the other agents’ actions and the true state.

Parameter r gives us the weight of such a team behavior motive. Notice that the payoff

of each agent is strictly decreasing with respect to the (Euclidean) distance between the

action that he chooses and the true state. Thus, each agent has incentives to acquire

information since more information allows for actions better suited to the underlying

state. Of course, for each r ∈ (0, 1], the specified preferences represent common interests

for all agents. Finally, I am assuming that the team concern has the form of a positive

informational spillover in the sense that, for each i ∈ N , Ui(a, t; r) strictly decreases with

‖t− aj‖, for each j 6= i.

Although the proposed payoffs are very specific, they can be viewed as a second-

order approximation of a more general class of convex preferences. The assumptions

imposed on preferences make the analysis tractable. More importantly, this class of

preferences allows us to work with all the relevant ingredients that describe an environment

without strategic interactions over actions and with external positive effects. The fact that

strategic interactions over actions are absent will enable us to focus on the analysis of how

the agents interact strategically only over their information acquisition decisions.

2.3 The Information Transmission Process

There is a set M := [0, 1] of feasible messages available to each agent for information

transmission purposes. Thus, the message space coincides with the type space of each

agent, and a message m ∈M sent by agent i may be interpreted as a statement that his

type is ti = m.

At the beginning of stage 1, each agent i ∈ N chooses the message that each of

his neighbors j ∈ Ni(g) sends to him.10 All messages are sent simultaneously. Write

10Formally, an agent chooses the message strategy that each of his neighbors adopts with respect to
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mji ∈ M to denote a generic message sent from agent j to agent i, mi := (mji)j 6=i to

denote a combination of messages received by agent i, and m := (mi)i∈N ∈ Mn(n−1) to

denote a message profile.

In terms of strategies, each agent chooses the degree of informativeness of the message

strategy that each of his neighbors adopts with respect to him. As it will be specified

below, a scalar parameter xij ∈ [0, 1] is used to summarize the degree of informativeness

of agent j’s message strategy with respect to agent i. Thus, for each j ∈ Ni(g), agent

i must choose an information acquisition parameter xij and we interpret this choice as

agent i acquiring an amount of information xij from agent j.

After each agent has chosen the information acquisition parameter for each of his

neighbors, a state t is randomly drawn from T according to a continuous joint density q(·)
and each agent learns the corresponding type.11 Each type ti is drawn from Ti according

to a (common) probability distribution, with continuous marginal density f(·), supported

on [0, 1]. I assume that the agents’ types are independent so that a state t is drawn from

T according to density q(t) :=
∏

i∈N f(ti). Let us denote the mean and the variance of

each agent i’s type, respectively, by µ :=
∫ 1

0
f(ti)tidti and by σ2 :=

∫ 1

0
f(ti)(ti − µ)2dti.

I can now be more specific about the information acquisition parameter and its in-

terpretation. For i ∈ N and j ∈ Ni(g), xij is the weight parameter of a linear com-

bination between a totally non-informative (pooling) and a totally informative (com-

pletely separating) message strategy. Formally, given the information acquisition param-

eter xij, agent j’s type tj sends message mji ∈ M to agent i according to the function

βji : M × Tj × [0, 1]→ [0, 1] defined as

βji(mji|tj;xij) := (1− xij)f(mji) + xijI(mji|tj), (2)

where I : M × Tj → [0, 1] is the indicator function defined, for each (mji, tj) ∈ M × Tj,

i 6= j, by (i) I(mji|tj) = 1 if mji = tj, and (ii) I(mji|tj) = 0 if mji 6= tj.

For xij ∈ [0, 1], i, j ∈ N , i 6= j, βji(·;xij) specifies a message strategy for agent

j with respect to agent i, parameterized by xij. Therefore, βji(mji|tj;xij) is the density

associated to type tj sending messagemji to agent i, given that agent i chooses information

acquisition parameter xij. Thus, xij can be interpreted as agent i choosing quality xij for

the message service through which he receives information from agent j about his type

(or simply as agent i acquiring amount xij of information from agent j).

Since the message space coincides with the type space of each agent, density f can be

evaluated meaningfully at each message m ∈M . Therefore, expression (2) above specifies

him. In this sense, this choice may be interpreted as a decision about the quality of a message service.
11In the present context, it would be equivalent to assume that agents learn their private information

before they decide about information acquisition.
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an appropriate class of message strategies for information transmission purposes.

Each agent i ∈ N incurs a cost c > 0 (in terms of time, effort, or money) for each

unit of information that he acquires from each of his neighbors. Thus, the cost function

is assumed to be linear. The described two-stage game typically has multiple equilibria.

Under the assumptions imposed on payoffs, the objective problem of an agent with respect

to information acquisition is not concave. These assumptions also imply that agents make

corner choices at equilibrium.

The class of message strategies allowed for is admittedly very specific. Three points

should be made in defense of this choice. The first is that it captures quite conveniently,

and without loss of generality for our purposes, the extent to which an agent j transmits

his information to another agent i: (i) if xij = 0, then agent j reveals no information at all

(i.e., he pools), (ii) if xij = 1, then agent j fully reveals (i.e., he completely separates), and

(iii) if xij ∈ (0, 1), then agent j reveals partially (i.e., he semi-separates). Furthermore,

the relation between the degree of informativeness of agent j’s message strategy with

respect to agent i and xij is continuous and strictly increasing on the interval [0, 1].12

The second point is that, as it will be discussed in Subsection 4.1, the assumed message

strategies induce posterior beliefs whose (conditional) mean and variance behave in a way

totally analogous to those obtained by assuming that the information transmission process

is described by a Normal signal consisting of the true type plus some noise. This way

of modeling information transmission is standard in the recent literature on the social

value of information and on communication networks.13 Thus, an interesting class of

information transmission processes falls qualitatively within this model.

The third point is that the underlying game where the agents decide about informa-

tion acquisition has typically multiple equilibria. This makes problematic any analysis

of welfare implications. The proposed message strategies have a linear structure which,

together with the linear structure assumed for preferences and for the cost function, mit-

igates crucially this problem. This makes tractable the analysis of social efficiency. This

paper aims at studying the compatibility between equilibrium and efficient information

acquisition in networks. The chosen message strategies, together with the assumptions

on preferences over actions and the linearity assumption on the cost function, allows us

to concentrate on this question.

Let xi := (xij)j 6=i ∈ Xi := [0, 1]n−1 denote an information acquisition strategy for

12The fact that the amount of information transmitted by an agent j to his neighbor i is completely
described by parameter xij ∈ [0, 1] enables us to model the information possessed by each agent as a
perfectly divisible good. Thus, using the proposed class of message strategies, we avoid the complicated
problem that results when information is modeled as an indivisible good, as successfully studied by Allen
[1], [2].

13See, e.g., Angeletos and Pavan [3], and Calvó-Armengol and de Mart́ı [8].
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agent i and let X := ×i∈NXi be the set of all information acquisition profiles. For a given

network g ∈ G, each agent i ∈ N is able to acquire information only from his neighbors.

So, I shall set xij = 0 for j /∈ Ni(g) ∪ {i} throughout the paper.

I turn now to describe how the posterior beliefs of the agents are formed. For two

agents i, j ∈ N , i 6= j, let λij : Tj×M× [0, 1]→ [0, 1] denote the density corresponding to

agent i’s posterior beliefs over agent j’s type, given the information acquisition parameter

xij. Agents use Bayes’ rule to update their priors.14 Bayes’ rule imposes

λij(tj|mji;xij) = βji(mji|tj;xij)f(tj)
/∫ 1

0

βji(mji|τ ;xij)f(τ)dτ . (3)

Since types are independent, an agent can update his beliefs over states by doing sep-

arately the corresponding Bayesian belief revision over each of the other agents’ types.

Thus, agent i’s posterior beliefs over T can be described by the function λi : T ×Mn−1×
Xi → [0, 1], defined as

λi(t|mi;xi) :=
∏
j 6=i

λij(tj|mji;xij).

Let Q be the set of all densities on T so that λi ∈ Q for each agent i.

2.4 Information Acquisition Equilibrium and Efficient Informa-
tion Acquisition

Let us now introduce the notions of equilibrium and efficiency.

It is useful first to specify action strategies. An action strategy for agent i with respect

to coordinate k 6= i of the action space is a function αik : M → [0, 1] that associates his

choice of action over coordinate k, αik(mki) ∈ [0, 1], to the message that he receives from

agent k, mki ∈M . Since types are independent and all messages are sent simultaneously,

an agent’s choice of action over a particular coordinate depends only on the message that

he receives from the expert in that coordinate, as specified. Likewise, an action strategy for

agent i with respect to coordinate i is a function αii : Ti → [0, 1]. Clearly, an agent’s choice

of action over the coordinate in which he is the expert depends only on his own initial

private information. An action strategy for agent i is then a function αi : Ti×Mn−1 → Ai

defined as αi(ti,mi) := (αii(ti), (αik(mki))k 6=i) for each (ti,mi) ∈ Ti ×Mn−1. Let ∆i be

the set of all action strategies for agent i.

The expected payoff of agent i in stage 2 is given by a function Vi,2 : Ai ×∆−i ×Q×
Ti ×Mn(n−1) → R defined, given his own type ti, a message profile m = (mi,m−i), his

14As mentioned earlier, xij = 0 for j /∈ Ni(g) ∪ {i}, i ∈ N , so that each agent can indeed use only his
neighbors’ message strategies to update his beliefs.
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own action ai = αi(ti,mi), a combination of action strategies followed by the other agents

α−i, and his own posterior beliefs about the true state λi, by15

Vi,2(ai, α−i, λi; ti,m) :=

∫
t−i∈T−i

λi(t|mi;xi)Ui

(
αi(ti,mi), α−i(t−i,m−i), t; r

)
dt−i, (4)

where α−i(t−i,m−i) = (αj(tj,mj))j 6=i.

For i ∈ N and λi ∈ Q, let the function α̂i(·;λi) : Ti × Mn−1 → Ai defined by

α̂i(ti,mi;λi) := arg maxai∈Ai
Vi,2(ai, α−i, λi; ti,mi,m−i) for each (ti,mi) ∈ Ti ×Mn−1 be

agent i’s optimal action strategy given his posterior beliefs λi.
16 For the assumed pref-

erences, the optimal action strategy of an agent i depends on the information that he

acquires (which endows him with beliefs λi) but not on the action strategies followed by

the rest of agents, α−i. As discussed earlier, strategic interactions over actions are absent

in this model.

The expected payoff of agent i in stage 1 is given by a function Vi,1 : ∆ × Q → R
defined, for each given action strategy profile α and posterior beliefs λi, by

Vi,1(α, λi) :=

∫
t∈T

q(t)

∫ 1

0

· · ·
∫ 1

0

∏
k∈N

∏
j 6=k

βkj(mkj|tk;xjk)×

× Vi,2(αi(ti,mi), α−i, λi; ti,m)dmkjdt− c
∑

k∈Ni(g)

xik.
(5)

Equation (5) above gives us agent i’s objective function corresponding to the sequential

rationality requirement in stage 1 for the equilibrium concept proposed in this paper, IAE.

With this specification agent i’s posterior beliefs are taken into account in his expected

utility at stage 1 through each Vi,2(αi(ti,mi), α−i, λi; ti,m), for the various information

sets (ti,m) ∈ Ti ×Mn(n−1) at stage 2. The idea here is to recognize the role of acquired

information in shaping agent i’s perception of his own future payoffs, and to incorpo-

rate such role into his optimal decision in the stage where he decides about information

acquisition. Using the specification in (5), we see that changes in agent i’s information

acquisition choice in stage 1 will change his own perception of his payoff in stage 2. Agent

i is then able to anticipate and compute the extent to which such perception changes. The

IAE concept departs from the perfect Bayesian equilibrium of the underlying game only

15Let dt :=
∏

k∈N dtk and dt−i :=
∏

k 6=i dtk for i ∈ N .
16An agent’s optimal action strategy is nothing but an action strategy that satisfies an additional re-

quirement (it maximizes the agent’s expected utility in stage 2 given certain posterior beliefs). Therefore,
as specified for each action strategy, for i ∈ N and λi ∈ Q, let α̂i(ti,mi;λi) := (α̂ii(ti), (α̂ik(mki;λik))k 6=i)
for each (ti,mi) ∈ Ti ×Mn−1. Since types are independent and messages are sent simultaneously, agent
i’s optimal action strategy over the k-th coordinate of the action space depends only on the message mki

that he receives from agent k, given his posterior beliefs λki.
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in that specification given in equation (5) of expected payoffs in stage 1.17 In a perfect

Bayesian equilibrium an agent considers in stage 1 only prior beliefs and cares about the

messages and the actions chosen by everyone rather than about the effects induced on

his own posterior beliefs. This makes it an equilibrium notion suitable for signaling and

cheap talk games, where the relevant decisions are about information revelation. How-

ever, if we wish to recognize the role of newly acquired information in shaping posterior

beliefs and induced perceptions of future payoffs (and to consider that agents are ex-ante

aware of such effects), then the payoff specification in (5) seems more suitable to analyze

information acquisition decisions.

In the definition of IAE below, condition (i) requires that each agent’s type choose an

expected payoff maximizing action in stage 2, taking as given the action strategies followed

by the others and the information acquisition strategies chosen by everyone. Condition

(ii) imposes each agent to choose optimally his information acquisition strategy in stage

1, which gives him his own posterior beliefs, taking as given the information acquisition

strategies chosen by the rest of agents. Condition (iii) simply requires that each agent

use Bayes’ rule to update his priors over states.

Definition 1. Given a network g ∈ G, an Information Acquisition equilibrium (IAE) is

a triple (α∗,λ∗,x∗) such that, for each i ∈ N :

(i) α∗i = α̂i(·;λ∗i ). (SR2)

(ii) For each λi ∈ Q,

Vi,1(α
∗, λ∗i ) ≥ Vi,1(α̂i(·;λi), α

∗
−i, λi). (SR1)

(iii) For each (tj,mji) ∈ Tj ×M such that j 6= i,

λ∗ij(tj|mji;x
∗
ij) = (1− x∗ij)f(tj) + x∗ijI(mji|tj) with x∗ij = 0 for j /∈ Ni(g) ∪ {i}. (BU)

For an agent i ∈ N , say that the information acquisition strategy xi ∈ Xi induces

beliefs λi ∈ Q if λi is obtained from xi using condition (BU) in Definition 1 above. It

formalizes the way in which information is transmitted between two agents connected

17For the two-agent version of the underlying game, the expression for agent i’s expected utility in
stage 1 in (5) can be simplified, upon substitution of the expression in (4), so as to obtain the equivalent
expression

Vi,1(α, λi) =
∫

t∈T

q(t)
∫ 1

0

∫ 1

0

βij(mij |ti;xji)βji(mji|tj ;xij)Ui(αi(ti,m), αj(tj ,m), t; r)dmjidmijdt−cxij .

This is the expected payoff specification in stage 1 that one uses in the perfect Bayesian equilibrium
concept for the underlying two-stage game. Therefore, IAE coincides with perfect Bayesian equilibrium
for the two-agent version of the game. However, such a simplification cannot be obtained for the case
with more than two agents.
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through a link by assuming that posterior beliefs are consistent with Bayesian updating.

To state Bayes’ rule as expressed in condition (BU) above, one must combine equations

(2) and (3). Say that the information acquisition profile x ∈X induces the belief profile

λ ∈ Qn if each xi, i ∈ N , induces the corresponding λi. So, if (α∗,λ∗,x∗) is an IAE, then

x∗ induces λ∗.

One may ask whether the fact that agents communicate through a network may lead

to the result that an agent’s optimal information acquisition strategy, as described by

conditions (SR2) and (SR1) in Definition 1 above, depends on other agents’ information

acquisition strategies. Proposition 2 gives an affirmative answer to that question so that

this model enables us to analyze strategic interactions only over information acquisition

decisions.

I now describe the efficiency benchmark that we shall use to gauge the efficiency

properties of IAE. The welfare measure proposed in this paper is the sum of the expected

payoff of all the agents in stage 1. Here we require that agents choose optimally their

action strategies in stage 2 and then compare information acquisition profiles. Hence, we

consider the possibility that the planner changes the information acquired by the agents,

who will then pay the corresponding new cost of information acquisition and use such

information optimally to choose their actions. As indicated earlier, the expected utility of

an agent in stage 1 incorporates his own perception of his expected utility in stage 2 using

the posterior beliefs resulting from his information acquisition decisions. In contrast,

the ex-ante welfare function is evaluated from the planner’s perspective. Therefore, the

agents’ posterior beliefs are not considered in the proposed welfare function in stage 1.

Formally,

Definition 2. Given a network g ∈ G and an information acquisition profile x ∈X that

induces a belief profile λ ∈ Qn, the welfare function evaluated in stage 2 is the function

W2 : T ×Mn(n−1) ×Qn → R defined by

W2(t,m;λ) :=
∑
i∈N

Ui

(
α̂i(ti,mi;λi), α̂−i(t−i,m−i;λ−i), t; r

)
,

where α̂−i(t−i,m−i;λ−i) := (α̂j(tj,mj;λj))j 6=i.

Definition 3. Given a network g ∈ G, x ∈ X is an efficient information acquisition

profile if it induces a belief profile λ that maximizes the welfare function evaluated in

14



stage 1, W1 : X → R, defined by

W1(x) :=

∫
t∈T

q(t)

∫ 1

0

· · ·
∫ 1

0

∏
k∈N

∏
j 6=k

βkj(mkj|tk;xjk)W2(t,m;λ)dmkj dt

− c
∑
i∈N

∑
k∈Ni(g)

xik.
(6)

2.5 A Two-Agent Example

As an antidote to the complexity of the ingredients of the previous subsections, I now

work out an example for the particular case where n = 2 to illustrate the model. Consider

N = {1, 2} and the network g = {12} so that each agent is able to acquire information

from the other. Following the development of the previous subsections, the type space

of the agents is T1 = T2 = [0, 1], and the state space is T = [0, 1] × [0, 1] with typical

element t = (t1, t2), where t1 ∈ T1 and t2 ∈ T2. The action space of the agents is

A1 = A2 = T = [0, 1] × [0, 1] and an action for agent i = 1, 2 is ai = (ai1, ai2). Thus,

an action profile is a = (a11, a12, a21, a22) ∈ A = A1 × A2 = [0, 1]4. The payoff to agent

i = 1, 2 is given by the expression

Ui(a, t; r) = −(1− r)
[
(t1 − ai1)

2 + (t2 − ai2)
2
]
− r
[
(t1 − a(3−i)1)

2 + (t2 − a(3−i)2)
2
]
.

As for the information transmission process, each agent i = 1, 2 has a set of messages

M = [0, 1] available to transmit information about his own type to the other agent. Using

the notation introduced in subsection 2.3, m1 = m21 and m2 = m12 denote, respectively,

the message received by agent 1 (from agent 2) and the message received by agent 2 (from

agent 1). Also, x1 = x12 and x2 = x21 denote, respectively, the information acquisition

strategy for agent 1 (to acquire information from agent 2) and the information acquisition

strategy for agent 2 (to acquire information from agent 1).

In this example, a message strategy for agent i = 1, 2, given the information acquisition

strategy x3−i chosen by the other agent, is simply

βi(m3−i|ti;x3−i) = (1− x3−i)f(m3−i) + x3−iI(m3−i|ti).

Accordingly, the induced beliefs for agent 3− i (i = 1, 2) over agent i’s type are given by

λ3−i(ti|m3−i;x3−i) = (1− x3−i)f(ti) + x3−iI(m3−i|ti).

The action choice of agent i = 1, 2, given his own type ti ∈ [0, 1] and the message

mi ∈ [0, 1] that he receives from agent 3− i, is given by his action strategy αi:

ai = (ai1, ai2) = αi(ti,mi) = (αii(ti), αi(3−i)(mi)).
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I proceed by computing the optimal action strategy and the optimal information ac-

quisition strategy for the agents. For the sake of clarity, I will write down the arguments

only for a given agent, say agent i = 1, but will also derive the analogous implications for

agent 2.

Consider a given information acquisition profile x = (x1, x2) ∈ [0, 1] × [0, 1] that

induces a belief profile λ = (λ1, λ2). From the expression above for the payoff to agent

i = 1 together with (4) agent 1’s expected payoff in stage 2, given type t1 ∈ [0, 1] and

message profile m = (m1,m2) ∈ [0, 1]× [0, 1], specializes to

V1,2(a1, α2, λ1; t1,m) =

∫ 1

0

[
(1− x1)f(t2) + x1I(m1|t2)

]
U1

(
a1, α2(t2,m2), t1, t2; r

)
dt2

= −(1− r)
∫ 1

0

[
(1− x1)f(t2) + x1I(m1|t2)

][
(t1 − a11)

2 + (t2 − a12)
2
]
dt2

− r
∫ 1

0

[
(1− x1)f(t2) + x1I(m1|t2)

][
(t1 − α21(m2))

2 + (t2 − α22(t2))
2
]
dt2,

where a1 = (a11, a12) = α1(t1,m1) = (α11(t1), α12(m1)). From the expression above it

follows that a∗11 = t1 and (using the expression analog to the one above for agent 2)

α∗22(t2) = t2 correspond to the optimal action strategy of the agents. Using this, we can

rewrite the expression above for agent 1’s expected payoff in stage 2, when both agents’s

choose their optimal actions for the aspect of the problem in which they are the experts,

as

V1,2(a
∗
1, α

∗
2, λ1; t1,m) =− (1− r)

[
(1− x1)

∫ 1

0

(t2 − a∗12)
2f(t2)dt2 + x1(m1 − a∗12)

2

]
− r(t1 − α∗21(m2))

2.

From the expression above (and from the analog one for agent 2), we obtain that a∗12 =

(1 − x1)µ + x1m1 and α∗21(m2) = (1 − x2)µ + x2m2 correspond to the optimal action

strategy of the agents. Using this and doing the algebra, yields

V1,2(a
∗
1, α

∗
2, λ1; t1,m) =− (1− r)(1− x1)

[
σ2 + x1(m1 − µ)2

]
− r
(
t1 − (1− x2)µ− x2m2

)2
.

Now, using (5) together with the expressions obtained above for both agents’ message

strategies, the expression for agent 1’s expected payoff in stage 1, when both agents’s

choose their optimal action strategies, specializes to

V1,1(α
∗,λ1) =

∫ 1

0

∫ 1

0

f(t1)f(t2)

∫ 1

0

∫ 1

0

[
(1− x2)f(m2) + x2I(m2|t1)

]
×

×
[
(1− x1)f(m1) + x1I(m1|t2)

]
V1,2(α

∗
1(t1,m1), α

∗
2, λ1; t1,m)dm2dm1dt2dt1 − cx1.
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By substituting the expression of agent 1’s expected payoff in stage 2, V1,2(α
∗
1(t1,m1), α

∗
2, λ1; t1,m),

obtained earlier, into the expression above and by doing the algebra, we finally obtain

V1,1(α
∗, λ1) = −(1− r)(1− x2

1)σ
2 − r(1− x2

2)σ
2 − cx1.

Therefore, the optimal information acquisition strategy of agent 1 is given by (i) x∗1 =

0 ⇔ c ≥ (1 − r)σ2, (ii) x∗1 = 1 ⇔ c ≤ (1 − r)σ2, and (iii) x∗1 ∈ {0, 1} ⇔ c = (1 − r)σ2,

regardless of the information acquisition strategy chosen by agent 2. Of course, for agent

2 one obtains an analogous optimal information acquisition strategy.

I turn now to study efficient information acquisition in this example. Addition of

the payoffs of the two agents, when both of them choose their optimal action strategies,

together with the expressions above for such optimal strategies, gives us the following

expression for the welfare function evaluated in stage 2:

W2(t1, t2,m1,m2;λ1, λ2) =
(
t2 − α∗12(m1)

)2
+
(
t1 − α∗21(m2)

)2
=
(
t2 − (1− x1)µ− x1m1

)2
+
(
t1 − (1− x2)µ− x2m2

)2
.

Using the expression in equation (6), the welfare function evaluated in stage 1 specializes

to

W1(x) =

∫ 1

0

∫ 1

0

f(t1)f(t2)

∫ 1

0

∫ 1

0

[
(1− x2)f(m2) + x2I(m2|t1)

]
×

×
[
(1− x1)f(m1) + x1I(m1|t2)

]
W2(t1, t2,m1,m2;λ1, λ2)dm2dm1dt2dt2 − c[x1 + x2].

Then, by substituting the expression for the welfare function evaluated in stage 2 obtained

earlier into the expression above and by doing the algebra, it can be checked that the

expression for the welfare function evaluated in stage 1 in equation (6) becomes

W1(x) = −2σ2 + x1[x1σ
2 − c] + x2[x2σ

2 − c].

Therefore, the efficient information acquisition profile (x1, x2) must satisfy, for each i =

1, 2, (i) xi = 0⇔ c ≥ σ2, (ii) xi = 1⇔ c ≤ σ2, and (iii) xi ∈ {0, 1} ⇔ c = σ2.

In this example we observe that the (possible) discrepancy between the efficient and

the equilibrium information acquisition profiles is due to the team concern. This example

illustrates the main ingredients of the model but it does not allow us to obtain insights

for the case where the agents are indeed connected through a network. In particular,

under the requirement imposed by the IAE notion that agents correctly anticipate the

role of information in shaping their posterior beliefs (and incorporate it in their informa-

tion acquisition decisions), interesting strategic interactions over information acquisition

decisions arise when more than two agents are connected through a network. Thus, the

fact that the agents acquire information through a network plays an essential role in this

model. The rest of the paper is devoted to that analysis.

17



3 Efficiency and Equilibrium

This section characterizes both the set of efficient information acquisition profiles and the

set of IAE, and relates the compatibility between them to the network density.

I start by studying the optimal action strategies followed by the agents. For i, k ∈ N ,

i 6= k, let

E[tk|mki;xik] :=

∫ 1

0

λik(tk|mki;xik)tkdtk

and

Var[tk|mki;xik] :=

∫ 1

0

λik(tk|mki;xik)
(
tk − E[tk|mki;xik]

)2
dtk

denote, respectively, the expected value and the variance of type tk for the received mes-

sage mki, given the information acquisition parameter xik. Thus, by applying the belief

revision rule specified in (BU) to agent i, with respect to agent k’s type, one obtains

E[tk|mki;xik] = (1− xik)µ+ xikmki, (7)

and

Var[tk|mki;xik] = (1− xik)
[
σ2 + xik(mki − µ)2

]
. (8)

Since the expected payoff of each agent in stage 2 is concave with respect to his own

action, agent i’s optimal action strategy α̂i(·;λi), λi ∈ Q, is given by the first order

conditions

α̂ii(ti) = ti and α̂ik(mki;λik) = E[tk|mki;xik] for each k 6= i, (9)

where xi induces λi. Thus, each agent chooses optimally his expectation of the underlying

state t according to the posteriors that he obtains with the information acquired from his

neighbors.

I turn now to characterize the efficient information acquisition profiles.

3.1 Efficient Information Acquisition

Using the payoff specification given by equation (1) and the specification of the welfare

function evaluated in stage 2 in Definition 2, one obtains

W2(t,m;λ) = −
∑
i∈N

∑
k 6=i

(
tk − α̂ik(mki;λik)

)2
.

Hence, a social planner who faces the problem of maximizing the welfare function evalu-

ated in stage 2 seeks to keep the action of each agent close to the underlying state and

ignores the team concern of each agent. This is due to the fact that agents are ex-ante
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identical so that the influence of each agent’s action on any other agent’s payoff is homoge-

nous across agents. Therefore, the efficient information acquisition profile is characterized

by the condition that ensures the optimal behavior of each agent with respect to infor-

mation acquisition in the limit case where the team concern is absent, i.e., when r = 0,

as provided by Proposition 1 below.

Proposition 1. Let g ∈ G and let x be an efficient information acquisition profile. Then,

for each agent i ∈ N and each neighbor k ∈ Ni(g), either

(i) xik = 0 if and only if c ≥ σ2,

(ii) xik = 1 if and only if c ≤ σ2, or

(iii) xik ∈ {0, 1} if and only if c = σ2.

Consider an efficient information acquisition profile x ∈ X. From the assumed homo-

geneity with respect to the variance of the agents’ types, together with the fact that the

information acquisition cost is identical for all agents, it follows that18

x = 0⇔ c ≥ σ2 (10)

and

x = 1⇔ c ≤ σ2. (11)

That is, for c 6= σ2, in an efficient information acquisition profile either all the agents

acquire full information from their neighbors or acquire no information at all.

Proposition 2 in Subsection 3.3 characterizes the best response information acquisition

strategy of an agent—as a function of the information acquisition strategies taken by the

rest of agents. It shows that, for a given network g ∈ G, the incentives of each agent

i ∈ N to acquire full information in an IAE from a neighbor k ∈ Ni(g) increase with

the amount of information that the rest of neighbors of agent k acquire from him. Thus,

under the sequential rationality requirement in stage 1 imposed by the IAE concept,

positive informational spillovers over actions induce a certain degree of coordination (in

the same direction) over the information acquisition strategies followed by the agents at

equilibrium. Before stating the formal result, I provide an example in the next subsection,

for a network involving three agents, that illustrates the forces behind that coordination

effect.19

18The notation 0 and 1 denotes, respectively, the vector (0, 0, · · · , 0) and the vector (1, 1, · · · , 1) in a
space of conformal dimension.

19I am grateful to Dragan Filipovich for suggesting me to provide an example along these lines.
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3.2 A Three-Agent Example

Consider N = {1, 2, 3} and the network g = {12, 23}. In this example we ask ourselves:

why should, in an IAE, the amount of information that agent 1 acquires from 2 depend

on the amount of information that 3 acquires from 2?

To address this question, it suffices to account for that part of agent 1’s expected

payoff due to the team concern. Using the payoff specification in (1), we see that agent

1 cares about −‖t − a3‖2. In particular, he wishes that the difference (t2 − a32)
2 be

minimized, i.e., he cares about the extent to which agent 3 solves aspect 2 (for which

agent 2 is the expert) of his problem. Notice that agent 1 is risk averse with respect to

agent 3’s choice over the second coordinate of the state of world. From (7), we know

that, given a message m23 received from agent 2, agent 3’s optimal action choice over the

second aspect of the problem is given by his expectation of that coordinate according to

the induced posteriors λ32 (that he obtains from his information acquisition decision x32

regarding agent 2). That is,

α̂32(m23;λ32) = E[t2|m23;x32] = (1− x32)µ+ x32m23.

First, suppose that agent 3 acquires no information at all from agent 2. Then, for

each message m23 ∈ [0, 1] received by agent 3 from agent 2, agent 1 knows that agent 3

optimally chooses α̂32(m23;λ32) = µ, so that agent 1 cares about −(t2 − µ)2. Thus, the

only source of uncertainty affecting agent 1 is with respect to t2.

If agent 1 decides to acquire no information at all from agent 2, then at stage 1 he

knows that at stage 2 he would compute −(t2−µ)2 according to his priors f(t2), obtaining

expected payoff −σ2 in stage 2. Consequently, he knows that at stage 1 he would compute

−σ2 again according to his priors f(t2). Thus the component of his expected payoff in

stage 1 due to concern −(t2 − a32)
2 and to his information acquisition decision amounts

to −σ2.

If, on the other hand, agent 1 decides to acquire full information from agent 2, then at

stage 1 he knows that at stage 2 he would know the true value of −(t2−µ)2. However, at

stage 1 he does not know the way in which µ relates to t2. In particular, he does not know

whether t2 coincides with µ or not, and, consequently, he continues to compute −(t2−µ)2

according to his priors f(t2). Then, the component of his expected payoff in stage 1 due

to concern −(t2 − a32)
2 and to his information acquisition decision amounts to −σ2 − c.

So long as c > 0 agent 1 prefers, regarding component −(t2 − a32)
2 of his payoff (and

other things being equal), to acquire no information from agent 2 when agent 3 acquires

no information from agent 2.

Second, suppose that agent 3 acquires full information from agent 2. Then, for a
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given message m23 ∈ [0, 1] received by agent 3 from agent 2, agent 1 knows that agent

3 optimally chooses α̂32(m23;λ32) = m23, so that agent 1 cares now about −(t2 −m23)
2.

So, there are now two sources of uncertainty affecting agent 1 (over this component of his

payoffs), one due to t2, the other corresponding to m23. Agent 1 can use the information

that he acquires from agent 2 to improve his knowledge about the way in which m23

relates to t2. Notice that, even though agent 1 knows the value of x32, his information

about the particular message m23 depends on the amount of information about t2 that

he acquires.

If agent 1 decides to acquire no information at all from agent 2, then at stage 1 he knows

that at stage 2 he would compute −(t2 − m23)
2 using his priors f(m23). Consequently,

he knows that at stage 1 he would compute −
∫ 1

0
(t2 −m23)

2f(m23)dm23 using his priors

f(t2). Thus, the component of his expected payoff in stage 1 due to concern −(t2 − a32)
2

and to his information acquisition decision amounts to −2σ2 in stage 1.

If, on the other hand, agent 1 decides to acquire full information from agent 2, then

at stage 1 he knows that at stage 2 he would compute −(t2 −m23)
2 knowing exactly the

way in which m23 relates to t2 for agent 2’s message strategy with respect to agent 3.

Therefore, agent 1 knows at stage 1 that at stage 2 he would know (i) that m23 coincides

with t2 and (ii) the exact value of m23. Consequently, agent 1 knows that at stage 2 he

would compute a zero expected payoff. Then, at stage 1 he would compute a zero payoff

according to his priors f(t2), so that the component of his expected payoff in stage 1 due

to concern −(t2 − a32)
2 and to his information acquisition decision amounts to −c.

We see that agent 1 is more inclined to acquire full information from agent 2 when

agent 3 acquires full information from agent 2 than in the case where agent 3 acquires no

information from agent 2.

In this example, agent 3’s information acquisition decisions from agent 2 affect the

relation between agent 1’s information acquisition decisions from agent 2 and his own

(anticipated) posterior perception of the expected value of −(t2 − a32)
2. Note that the

IAE concept imposes that the posterior beliefs over t2 of agent 1 and of agent 3 enter agent

1’s expected payoff in stage 1 in a multiplicative way. This implies that the information

a acquisition parameters x12 and x32 enter also agent 1’s expected payoff in stage 1 in a

multiplicative way, which leads to the result that the information acquisition decisions of

agents 1 and 3 are interdependent at equilibrium when information acquisition is costly.

3.3 Information Acquisition Equilibrium

The next proposition characterizes the best response information acquisition strategies of

the agents.
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Proposition 2. Let g ∈ G and let (α∗,λ∗,x∗) be an IAE. Then, for each agent i ∈ N
and each neighbor k ∈ Ni(g), either

(i) x∗ik = 0 if and only if c ≥ σ2
[
(1− r) + 2r 1

n−1

∑
j∈Nk(g)\{i}(x

∗
jk)2
]
,

(ii) x∗ik = 1 if and only if c ≤ σ2
[
(1− r) + 2r 1

n−1

∑
j∈Nk(g)\{i}(x

∗
jk)2
]
, or

(iii) x∗ik ∈ {0, 1} if and only if c = σ2
[
(1− r) + 2r 1

n−1

∑
j∈Nk(g)\{i}(x

∗
jk)2
]
.

Since we are considering an externality, with the form of the team concern, one might

expect that the conditions that characterize the set of equilibria (provided by Proposition 2

above) do not coincide with those characterizing the set of efficient information acquisition

profiles (provided by Proposition 1). The forces behind this discrepancy for this set-up

are, however, more subtle than those involved in traditional inefficiency results in the

presence of externalities. The fact that the agents’ expected payoffs in stage 1 incorporate

their expected payoffs in stage 2 using their own posterior beliefs is crucial to explain the

differences between efficient and equilibrium information acquisition.

In this model, the information that an agent i ∈ N acquires from a neighbor k ∈ Ni(g)

shapes his own beliefs about the underlying state as well as about the extent to which the

optimal action of any other neighbor of agent k, j ∈ Nk(g)\{i} approaches the true state.

In other words, by changing his information acquisition decision, agent i changes the way

in which he anticipates his perception of the extent to which agent j ∈ Nk(g) \ {i} solves

aspect k of his own problem. This is mathematically expressed by the fact that, under

the sequential rationality condition in stage 1 imposed by the IAE concept, the posterior

beliefs of agent i and of agent j about tk enter agent i’s expected utility at stage 1 in

a multiplicative way. Finally, note that, to obtain the result stated in Proposition 2, is

crucial that (i) information acquisition be costly, that (ii) agent i cares about agent j’s

action choice over coordinate k of the action space, and that (iii) agent i be risk averse

with respect to the difference tk − ajk.

An obvious consequence of Proposition 2 is that, in equilibrium, it is less likely that a

hub in a network acquires full information from the agents in his periphery than each of

the agents in the periphery acquire full information from that particular hub. Also, the

likelihood with which an agent in the periphery of a hub acquires full information from

that hub increases with the number of agents in the periphery of the hub. To see this,

consider the star network g = {12, 13, . . . , 1n}. It follows from Proposition 2 (ii) that

there exists an IAE where each agent in the periphery of agent 1 acquires full information

from that hub if 0 ≤ c ≤ σ2
[
(1 − r) + 2rn−2

n−1

]
. If we consider a large group so that

n → ∞, then there exists an IAE where each agent in the periphery of agent 1 acquires

full information from that hub if 0 ≤ c ≤ σ2(1 + r). In contrast, in equilibrium, agent 1
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acquires full information from an agent in the periphery only if 0 ≤ c ≤ σ2(1− r).
Another consequence of Proposition 2 is that the incentives of the agents to ac-

quire full information from their neighbors in a network increase with the minimum and

maximum degrees of that network. To see this, consider the complete circle network

g = {12, 23, . . . , (n− 1)n} so that δ(g) = ρ(g) = 2. From Proposition 2 (ii), it follows

that there is an IAE where each agent acquires full information from his neighbors if and

only if 0 ≤ c ≤ σ2
[
(1 − r) + 2r 1

n−1

]
. If we consider a large group so that n → ∞, that

condition becomes 0 ≤ c ≤ σ2(1 − r). This gives us an upper bound on the cost lower

than that ensuring that each agent in the periphery of the hub acquires full information

from that hub in a star network, as shown above.

3.4 Equilibrium, Efficiency, and the Network Density

Despite the linearity assumptions used in this paper, the best response information ac-

quisition strategies characterized by Proposition 2 still allow for the existence of multiple

IAE for a broad class of networks. To compare efficient and equilibrium information ac-

quisition profiles, it is useful to use Proposition 2 to characterize IAE where either all the

agents acquire full information from their neighbors or acquire no information at all.

Let us define κ(a(g), n) := max {2[a(g)− 1]/(n− 1), 0} where a(g) ∈ {δ(g), ρ(g)}.
That is, κ(a(g), n) is a function strictly increasing with a(g), a(g) ∈ {δ(g), ρ(g)}, i.e.,

with the minimum and the maximum degrees of network g, and strictly decreasing with

the number of agents in N . Thus, κ(a(g), n), a(g) ∈ {δ(g), ρ(g)}, can be understood

as measures of the degree of density of network g relative to the size of the organiza-

tion/group.

Consider an information acquisition profile x∗ ∈X corresponding to an IAE. It follows

from Proposition 2 (i) that

x∗ = 0⇔ c ≥ σ2(1− r). (12)

On the other hand, Proposition 2 (ii) implies that

x∗ = 1⇔ c ≤ σ2[(1− r) + rκ(δ(g), n)]. (13)

Notice that an IAE equilibrium for each of the regions of the information acquisition cost

delimited by equations (12) and (13) above is not necessarily unique. It needs not be so

even when one restricts attention to IAE where either each agent acquires full information

or each agent acquires no information at all. To see this, notice that σ2(1− r) ≤ σ2[(1−
r) + rκ(δ(g), n)] for each g ∈ G and each n ≥ 3 since κ(δ(g), n) ≥ 0 for each g ∈ G

and each n ≥ 3. Therefore, for σ2(1 − r) ≤ c ≤ σ2[(1 − r) + rκ(δ(g), n)], both x∗ = 0

and x∗∗ = 1 correspond to IAE. It can be easily checked that this is the only case where
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multiplicity of equilibria arises when one restricts attention to IAE where either all the

agents acquire full information from their neighbors or acquire no information at all.

Corollary 1. Let g ∈ G be a network such that δ(g) ≥ n+1
2

. Then, for each r ∈ [0, 1]

and each c ∈ R+, for each efficient information acquisition profile x ∈ X there exists a

belief profile λ ∈ Qn induced by x such that (α,λ,x) is an IAE.

Proof. First, suppose that 0 ≤ c ≤ σ2. Then, using (11), we know that x = 1 is the

efficient information acquisition profile. Since δ(g) ≥ n+1
2
⇔ κ(δ(g), n) ≥ 1 for each

n ≥ 3 and each r ∈ [0, 1], we know that 0 ≤ c ≤ σ2 implies necessarily 0 ≤ c ≤
σ2[(1 − r) + rκ(δ(g), n)] for each n ≥ 3. But then, using (13), one obtains that x = 1

corresponds to an IAE.

Second, suppose that c ≥ σ2. Then, using (10), we know that x = 0 is the efficient

information acquisition profile. But then c ≥ σ2(1 − r) for each r ∈ [0, 1] so that, using

(12), we obtain that x = 0 corresponds to an IAE. 2

The result in Corollary 1 allows us to relate the network density to the compatibility

between equilibrium and efficient information acquisition. In particular, if the minimum

degree of the network is high enough relative to the size of the organization/group, then

each efficient information acquisition profile can be reached in an IAE.

However, one must consider the comparison between equilibrium and efficient infor-

mation acquisition obtained from Corollary 1 with due care since, as mentioned earlier,

there are multiple IAE for some regions of the cost. In particular, for r ∈ (0, 1], using

(12), one obtains that, regardless of the network architecture, if σ2(1− r) < c < σ2, then

there exists an IAE where all the agents acquire no information at all from his neigh-

bors. However, it follows from (11) that the efficient information profile for cost in that

interval requires that all the agents acquire full information, regardless of the network

architecture.

Corollary 2. Let g ∈ G be a network such that δ(g) < n+1
2

. Then, for each r ∈ (0, 1]

and each σ2[(1 − r) + rκ(δ(g), n)] < c < σ2, each agent acquires full information from

each of his neighbors in the efficient information acquisition profile whereas at least some

agent acquires no information at all in the information acquisition profile corresponding

to each IAE.

Proof. Since δ(g) < n+1
2
⇔ κ(δ(g), n) < 1 for each n ≥ 3 and each r ∈ (0, 1], we know that

σ2[(1− r) + rκ(δ(g), n)] < σ2. So, suppose that σ2[(1− r) + rκ(δ(g), n)] < c < σ2. Then,

from (11), we know that x = 1 is the efficient information acquisition profile. However,
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since c > σ2[(1− r) + rκ(δ(g), n)], the result in Proposition (i) implies that at least some

agent acquires no information at all in each IAE. 2

Obviously, the existence of multiple IAE does not impose any qualification to the

message conveyed by Corollary 2 since it identifies a region of the information acquisition

cost where all IAE are inefficient.

The intuition behind the results in Corollary 1 and Corollary 2 is as follows. By

comparing the result in Proposition 1 with that in Proposition 2, we observe that the

(possible) discrepancy between efficient and equilibrium information acquisition is driven

by the coordination effect (in the same direction) identified in Proposition 2. For informa-

tion acquisition cost relatively high, c > σ2, this coordination effect has no influence on

the agents’ decisions for one of the possible equilibria (the one with no information acqui-

sition). So, one obtains that an equilibrium information acquisition profile coincides with

the efficient one. However, for lower values of the information acquisition cost, c < σ2,

such a coordination effect does influence the agents’ decisions at each equilibrium. If

c < σ2, full information acquisition of each agent from each of his neighbors corresponds

to the efficient profile. Then, given the coordination effect, an agent i ∈ N will choose, at

equilibrium, to acquire full information from a neighbor k ∈ Ni(g) if the number of other

neighbors of agent k that acquire full information from him is relatively high. For this to

happen, agent k needs to be “minimally connected” in network g. Since we are looking

at equilibria where all the agents either acquire full information or acquire no information

at all, the fact that each agent k ∈ N be minimally connected is a sufficient condition to

guarantee efficiency of the equilibrium profile. The minimal connectivity condition that

we obtain, δ(g) ≥ n+1
2

, requires that the minimum degree of network g be larger than half

of the size of the group.

Corollary 3. Consider a network g ∈ G and suppose that r ∈ [0, 1]. Then:

(i) For each 0 < c < σ2(1− r), the efficient information acquisition profile coincides with

the information acquisition profile corresponding to the unique IAE. In this IAE, each

agent acquires full information from each of his neighbors.

(ii) If ρ(g) ≥ n+1
2

, then, for each c > σ2[(1 − r) + rκ(ρ(g), n)] the efficient information

acquisition profile coincides with the information acquisition profile corresponding to the

unique IAE. In this IAE, each agent acquires no information at all from each of his

neighbors. Moreover, if ρ(g) < n+1
2

, then the same conclusion holds for each c > σ2.

Proof. (i) Clearly, 0 < c < σ2(1−r) implies 0 < c < σ2 for each r ∈ [0, 1]. So, using (11),

we know that, for each 0 < c < σ2(1 − r), the efficient information acquisition profile is
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x = 1. Also, since, for each r ∈ [0, 1] and each i ∈ N ,

σ2(1− r) ≤

≤ inf

σ2
[
(1− r) +

2r

n− 1

∑
j∈Nk(g)\{i}

(x∗jk)2
]

: x∗jk ∈ [0, 1] , j ∈ Nk(g) \ {i} , k ∈ Ni(g)

 ,

Proposition 2 (ii) implies that x∗ = 1 is the information acquisition profile corresponding

to the unique IAE when c < σ2(1− r).
(ii) First suppose that ρ(g) ≥ n+1

2
. Then, κ(ρ(g), n) ≥ 1 and, therefore, σ2[(1 −

r) + rκ(ρ(g), n)] ≥ σ2 for each r ∈ [0, 1]. So, using (10), we know that, for each c >

σ2[(1− r) + rκ(ρ(g), n)], the efficient information acquisition profile is x = 0. Also, since

for each r ∈ [0, 1] and each i ∈ N ,

σ2[(1− r) + rκ(ρ(g), n)] ≥

≥ sup

σ2
[
(1− r) +

2r

n− 1

∑
j∈Nk(g)\{i}

(x∗jk)2
]

: x∗jk ∈ [0, 1] , j ∈ Nk(g) \ {i} , k ∈ Ni(g)

 ,

Proposition 2 (i) implies that x∗ = 0 is the information acquisition profile corresponding

to the unique IAE when c > σ2[(1− r) + rκ(ρ(g), n)].

Finally, suppose that ρ(g) < n+1
2

. Then, κ(ρ(g), n) < 1 and, therefore, σ2[(1 − r) +

rκ(ρ(g), n)] < σ2 for each r ∈ [0, 1]. So, since c > σ2 implies c > σ2[(1− r) + rκ(ρ(g), n)],

we can use again the arguments above to obtain that, for c > σ2, the efficient information

acquisition profile is x = 0 and x∗ = 0 is the information acquisition profile corresponding

to the unique IAE. 2

Corollary 3 gives us sufficient conditions for each efficient information acquisition pro-

file to coincide with that at the unique equilibrium. In particular, the sufficient condition

provided by Corollary 3 (ii) depends on whether the maximum degree of the network

exceeds n+1
2

or not. It can be easily checked that the lower bound identified in Corollary

3 (ii) increases with the maximum degree of the network on the interval [σ2, σ2(1 + r)].

Thus, Corollary 3 (ii) may seem to convey the message that, for values of the information

acquisition cost high enough, c ∈ [σ2, σ2(1 + r)], the compatibility between efficient and

equilibrium information acquisition is favored when the maximum degree of the network

is relatively low. However, Corollary 3 (ii) gives us just a sufficient condition on the ex-

istence of a unique efficient IAE profile. As shown by Corollary 2, even for cost in the

interval [σ2, σ2(1 + r)], there exists an efficient IAE profile when the minimum degree of

the network is relatively high (δ(g) ≥ n+1
2

).

The intuition behind the result in Corollary 3 (ii) is as follows. If c ∈ [σ2, σ2(1 + r)],

agents acquire no information at all in the efficient information acquisition profile. Then,
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given the coordination effect identified in Proposition 2, an agent i ∈ N will choose,

at equilibrium, to acquire no information from a neighbor k ∈ Ni(g) if the number of

other neighbors of agent k that acquire no information from him is relatively high. A

sufficient condition for this to happen is, clearly, that the number of neighbors of agent k

be relatively low.

Furthermore, Corollary 3 implies that, for either sufficiently low or sufficiently high

values of the information acquisition cost, the efficient information acquisition behavior

coincides with that at equilibrium, regardless of the network architecture. This result is

provided formally by Corollary 4 below.

Corollary 4. Consider a network g ∈ G and suppose that r ∈ [0, 1]. If either 0 ≤ c ≤
σ2(1 − r) or c ≥ σ2(1 + r), then each efficient information acquisition profile coincides

with the information acquisition profile corresponding to the unique IAE.

The result in Corollary 4 is a straightforward consequence of Corollary 3 combined

with the fact that, from the definition of κ(a(g), n), a(g) ∈ {δ(g), ρ(g)}, we have

0 ≤ κ(δ(g), n) ≤ κ(ρ(g), n) ≤ 2 · n− 2

n− 1
< 2 for each g ∈ G and each n ≥ 3.

Therefore,

σ2(1− r) ≤ σ2[(1− r) + rκ(δ(g), n)] ≤ σ2[(1− r) + rκ(ρ(g), n)] < σ2(1 + r)

is satisfied for each g ∈ G and each n ≥ 3.

The intuition behind the result in Corollary 4 is simply that, for either very low or

very high values of the cost, the coordination effect identified in Proposition 2 becomes of

no importance for the agents’ incentives to acquire information. This leads to the result

that the IAE profile coincides with the efficient one.

4 Robustness and Justifications of the Model

This paper has studied both equilibrium and efficiency properties of the information ac-

quisition phenomenon through networks by using a specific description of the information

transmission process and by making specific assumptions on payoffs. In this section, I

discuss the robustness of the model by analyzing the implications of changing some of the

assumptions.

The first subsection below discusses the implications of assuming an alternative infor-

mation transmission process where the agents receive a Normal signal consisting of the

true type plus some noise. The second subsection studies whether the main implications
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of the model continue to hold under a payoff perturbation that introduces a convex cost

function.

4.1 Normal Signals

Following the approach pursued by recent works on the social value of information and on

communication networks,20 let us consider an alternative description of the information

transmission process. Assume that each type ti is drawn according to a Normal distri-

bution with mean µ and variance σ2. As a consequence of his information acquisition

decisions, each agent i ∈ N receives from each of his neighbors k ∈ Ni(g) a private signal

yki := tk + εki where εki is an idiosyncratic noise normaly distributed with mean zero and

variance ς2ki. Furthermore, for each i ∈ N , assume that: (i) tk and εki are independent for

each k 6= i, and (ii) εki and εji are independent for each k, j ∈ N such that k 6= i, j 6= i,

and k 6= j. The rest of the game is identical to the one described in Section 2.

Then, it can be checked that agent i’s posterior beliefs about type tk, k 6= i, conditional

on receiving signal yki, are given by a Normal distribution with mean E[tk|yki] = γyki +

(1− γ)µ and variance Var[tk|yki] satisfying γ = Var[tk|yki]/(σ
2 + ς2ki), where γ ∈ [0, 1].

Therefore, since an agent’s expected payoffs are concave with respect to his own action,

his optimal action strategy for a given coordinate k 6= i consists of a linear combination

between the mean of type tk (using prior beliefs) and the signal yki that he receives from

agent k. The class of message strategies chosen in this paper leads to the same conclusion,

as implied by equation (7).

Furthermore, Var[tk|yki]/(σ
2 + ς2ki) increases with γ, and one obtains the limit cases:

(a) if γ → 1, then Var[tk|yki] ≈ σ2 + ς2ki whereas (b) if γ → 0, then ς2ki →∞ for a bounded

Var[tk|yki]. This implication that the variance of the type (conditioned on the signal)

increases with γ ∈ [0, 1] is anologous to the one obtained in this paper, as derived from

equation (8). The corresponding implication obtained in this paper is that the variance

of an unknown agent’s type, from the perspective of the agent that acquires information

from him, decreases with the amount of information that he acquires.

Thus, given the assumed payoffs, this alternative benchmark for information transmis-

sion with normal signals permits us to obtain implications qualitatively similar to those

derived from the message strategies considered in this paper. In particular, in both bench-

marks, one obtains that each agent’s optimal action strategy (for a given dimension of the

action space) is linear with respect to the received signal, according to a certain weight

parameter. In addition, the variance of an unknown agent’s type, conditional upon the

received signal, decreases with such a weight parameter. This paper has analyzed infor-

20See, e.g., Angeletos and Pavan [3], and Calvó-Armengol and de Mart́ı [8].
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mation acquisition by allowing the agents to choose endogenously the value of that weight

parameter.

4.2 Non-linear Information Acquisition Cost

This paper has concentrated on the analysis of both efficient and equilibrium information

acquisition strategies where agents either acquire full information or acquire no infor-

mation at all. The result that the planner and the agents make corner choices in their

respective decision problems (i.e., xik ∈ {0, 1} for each k ∈ Ni(g) and each i ∈ N) is driven

by the assumed message strategies and by the assumption of linear information acquisi-

tion cost. This has made tractable the problem of comparing efficient and equilibrium

information acquisition profiles.

One may wonder, however, whether the results obtained here would change under a

slightly modified class of preferences that allows for the study of choices about information

acquisition given by interior solutions (i.e., xik ∈ (0, 1) for each k ∈ Ni(g) and each i ∈ N).

To answer this, I consider a payoff perturbation by assuming that each agent i ∈ N
incurs a cost of information acquisition with respect to each neighbor k ∈ Ni(g) given by

a (twice differentiable) cost function c : [0, 1]→ R+ satisfying: (i) c′(x) > 0 for each x ∈
(0, 1], (ii) c′(0) = 0 and c′(1) > 2σ2(1 + r), and (iii) c′′(x) > 2σ2(1 + r) for each x ∈ [0, 1].

Condition (ii) above ensures that the planner and the agents make interior choices in

their respective decision problems with respect to information acquisition. Condition (iii)

guarantees that the respective information acquisition decision problems for the planner

and the agents are concave. The rest of the game is identical to the one presented in

Section 2.

Under the alternative assumption introduced above, one obtains the following results

regarding efficient and equilibrium information acquisition behavior. They are analogs to

those provided by Proposition 1 and Proposition 2.

Proposition 3. Let g ∈ G and let x be an efficient information acquisition profile. Then,

for each agent i ∈ N and each neighbor k ∈ Ni(g), the information adquisition parameter

xik satisfies xik ∈ (0, 1) and
c′(xik)

xik

= 2σ2. (14)

Proposition 4. Let g ∈ G and let (α∗,λ∗,x∗) be an IAE. Then, for each agent i ∈ N
and each neighbor k ∈ Ni(g), for each given x∗−i ∈ X−i, the information acquisition
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parameter x∗ik satisfies x∗ik ∈ (0, 1) and

c′(x∗ik)

x∗ik
= 2σ2

[
(1− r) +

2r

n− 1

∑
j∈Nk(g)\{i}

(x∗jk)2
]
. (15)

Let us see briefly whether the earlier result (obtained in Proposition 2) stating that

the incentives of an agent to acquire information from a given neighbor increase with

the amount of information that the rest of neighbors of that neighbor acquire from him

continues to apply. Consider a network g ∈ G. For a given agent i ∈ N and a given

neighbor k ∈ Ni(g), let us define the function

H(xik; y) :=
[
(1− r) +

2r

n− 1
y
]
σ2x2

ik − c(xik)−
[
(1− r) +

r

n− 1
y
]
σ2,

where y =
∑

j∈Nk(g)\{i} x
2
jk. The proof of Proposition 4 shows that agent i chooses op-

timally the amount of information that he acquires from his neighbor k if and only if

he chooses x∗ik ∈ [0, 1] so as to maximize H(xik; y). Therefore, the first order condi-

tion ∂H(x∗ik; y)/∂xik = 0 gives us equation (15) above. Furthermore, it can be checked

that ∂2H(xik; y)/∂xik∂y ≥ 0 for each xik ∈ [0, 1] and each y ≥ 0. Then, using Topkis’

Monotonicity Theorem,21 one obtains that x∗ik is an increasing function with respect to y.

Hence, under this alternative cost specification, the result that the agents wish to

coordinate their information acquisition decisions in the same direction continues to apply.

This is important since the results of this paper relating the network density to the

compatibility between efficient and equilibrium information acquisition rely strongly on

that coordination effect.

It would be interesting to analyze the compatibility between efficient and equilibrium

information acquisition profiles under this alternative cost specification. However, we

observe that equation (15) characterizes a multiplicity of IAE where the agents make

interior choices. Consequently, some selection criterion would be necessary in order to

carry out that welfare analysis.

5 Concluding Comments

This paper considered a multi-agent information transmission model, in terms of Bayesian

belief revision processes, to analyze information acquisition decisions by agents involved

in a network. The environment investigated here is one with no conflict of interests over

actions and with positive informational spillovers. The IAE concept, that incorporates the

role of the newly acquired information in shaping own (anticipated) perception of future

21See, e.g., Topkis [22].
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expected payoffs into the agent’s sequential rationality requirements, has been proposed

to analyze information acquisition decisions. The main contributions of this paper were

(i) to propose an appealing game theoretical solution concept, IAN, to study information

acquisition decisions within networked groups, (ii) to characterize both the efficient and

the equilibrium behavior with respect to information acquisition, and (iii) to relate the

compatibility between efficient and equilibrium information acquisition to the network

density.

One may expect that the results of this paper hold in a wide class of environments

where the information structure features complementarities, where there are no strategic

interactions over actions, and where each agent cares about his own action and wishes

the others to align theirs with the true state. Although the assumptions of the model

are specific, they do not appear to be essential for its main results to follow. In this

respect, quadratic payoffs can be considered as a second-order approximation of a more

general class of convex preferences. The chosen payoffs over actions, together with the

chosen message strategies and the linearity assumption on the cost function, are crucial

to obtain that, in equilibrium, an agent acquires either full information or no information

at all from a given neighbor. This alleviates the problem of multiplicity of equilibria,

making tractable the welfare exercise of comparing efficient and equilibrium information

acquisition profiles.

However, the results obtained here need not extend to environments with strategic

complementarities over actions and/or a second-guessing coordination motive in payoffs,

as it is the case under the class of preferences proposed, for example, by Morris and Shin

[18], Angeletos and Pavan [3], Calvó-Armengol and de Mart́ı [8], and Hagenbach and

Koessler [13]. For these models, strategic interactions over actions are rich and constitute

an important part of their analyses. In contrast, this work has concentrated only on the

study of strategic interactions over information acquisition decisions.

Finally, this paper assumed that information cannot be transmitted through agents

indirectly linked in a network. It would be interesting to investigate the information

acquisition problem when such a network effect is allowed for.

Appendix

This appendix is devoted to the proofs of the various propositions.

A bit of notation will be useful. For i, k ∈ N , i 6= k, let θ(tk|mki;xik) :=
(
tk −

E[tk|mki;xik]
)2

denote agent i’s square forecast error about tk, conditioned on receiving

message mki, given the piece of information xik that he acquires from agent k. Using
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equation (7), one then easily obtains

θ(tk|mki;xik) = (tk − µ)2 + x2
ik(mki − µ)2 − 2xik(tk − µ)(mki − µ). (16)

With this in hand, let us proceed to the proofs of the propositions.

Proof of Proposition 1. Consider a network g ∈ G. The optimal action strategy in

equation (9), together with the expression for the square forecast error in equation (16),

allows us to write the welfare function evaluated in stage 2 as

W2(t,m;λ) = −
∑
i∈N

∑
k 6=i

θ(tk|mki;xik)

= −(n− 1)
∑
i∈N

(ti − µ)2 −
∑
i∈N

∑
k∈Ni(g)

x2
ik(mki − µ)2

+ 2
∑
i∈N

∑
k∈Ni(g)

xik(tk − µ)(mki − µ).

By combining the expression above with equation (6), we can write the welfare function

evaluated in stage 1 as

W1(x) =− (n− 1)nσ2 − c
∑
i∈N

∑
k∈Ni(g)

xik

−
∑
i∈N

∑
k∈Ni(g)

x2
ik

∫ 1

0

f(tk)

∫ 1

0

βki(mki|tk;xik)(mki − µ)2dmki dtk

+ 2
∑
i∈N

∑
k∈Ni(g)

xik

∫ 1

0

f(tk)

∫ 1

0

βki(mki|tk;xik)(tk − µ)(mki − µ)dmki dtk.

(17)

I proceed by expressing each of the terms in equation (17) as a function of the information

acquired by the agents. Consider an agent i ∈ N and an agent k ∈ Ni(g). Applying the

parameterization of message strategies in (2) to agent k with respect to agent i, we obtain∫ 1

0

f(tk)

∫ 1

0

βki(mki|tk;xik)(mki − µ)2dmki dtk

=

∫ 1

0

f(tk)

∫ 1

0

[(1− xik)f(mki) + xikI(mki|tk)](mki − µ)2dmki dtk

=

∫ 1

0

f(tk)[(1− xik)σ2 + xik(tk − µ)2]dtk = σ2.

(18)

Similarly, we can compute∫ 1

0

f(tk)

∫ 1

0

βki(mki|tk;xik)(tk − µ)(mki − µ)dmki dtk

=

∫ 1

0

f(tk)

∫ 1

0

[(1− xik)f(mki) + xikI(mki|tk)](tk − µ)(mki − µ)dmki dtk

= xik

∫ 1

0

f(tk)(tk − µ)2dtk = xikσ
2.

(19)
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So, by substituting equations (18) and (19) into equation (17), we can express the welfare

function evaluated in stage 1 as

W1(x) = −(n− 1)nσ2 +
∑
i∈N

∑
k∈Ni(g)

xik[xikσ
2 − c]. (20)

Let ψ(xik) := xik[xikσ
2 − c]. Given the parabolic shape of function ψ, we obtain that the

welfare function evaluated in stage 1 is maximized according to: for each i ∈ N and each

k ∈ Ni(g), (i) xik = 1 if and only if c ≤ σ2, (ii) xik = 0 if and only if c ≥ σ2, and (iii)

xik ∈ {0, 1} if and only if c = σ2, as stated. 2

Proof of Proposition 2. Consider a network g ∈ G. Consider an agent i ∈ N , a type

ti ∈ Ti, a message profile m = (mi,m−i) ∈ Mn(n−1), and an information acquisition

profile x ∈ X that induces a belief profile λ ∈ Qn. Substitution of equation (1) into

equation (4), gives us the following expression for the expected payoff of agent i in stage

2:

Vi,2(αi(ti,mi), α−i, λi; ti,m) = −(1− r)
(
ti − αii(ti)

)2
− (1− r)

∑
k 6=i

∫ 1

0

λik(tk|mki;xik)
(
tk − αik(mki)

)2
dtk

− r

n− 1

∑
j 6=i

(
ti − αji(mij)

)2
− r

n− 1

∑
k 6=i

∑
j 6=i,k

∫ 1

0

λik(tk|mki;xik)
(
tk − αjk(mkj)

)2
dtk

− r

n− 1

∑
k 6=i

∫ 1

0

λik(tk|mki;xik)
(
tk − αkk(tk)

)2
dtk.

(21)

By substituting the optimal action strategies in equation (9) into equation (21) above,

we can write the expected payoff of agent i ∈ N for (ti,m) ∈ Ti ×Mn(n−1), when all the

agents choose their optimal action strategies, as

Vi,2(α̂i(ti,mi;λi), α̂−i, λi; ti,m) = −(1− r)
∑
k 6=i

Var[tk|mki;xik]

− r

n− 1

∑
j 6=i

θ(ti|mij;xji)−
r

n− 1

∑
k 6=i

∑
j 6=i,k

∫ 1

0

λik(tk|mki;xik)θ(tk|mkj;xjk)dtk.
(22)

Now, using equations (5) and (22), we can write agent i’s expected payoff in stage 1, when
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all the agents choose their optimal action strategies, as

Vi,1(α̂, λi) =− (1− r)
∑
k 6=i

∫ 1

0

f(τ)

∫ 1

0

βki(mki|τ ;xik)Var[tk|mki;xik]dmki dτ

− r

n− 1

∑
j 6=i

∫ 1

0

f(τ)

∫ 1

0

βij(mij|τ ;xji)θ(τ |mij;xji)dmij dτ

− r

n− 1

∑
k 6=i

∑
j 6=i,k

∫ 1

0

f(τ)

∫ 1

0

βki(mki|τ ;xik)

∫ 1

0

βkj(mkj|τ ;xjk)×

×
∫ 1

0

λik(tk|mki;xik)θ(tk|mkj;xjk)dtk dmkj dmki dτ

−
∑

k∈Ni(g)

cxik.

(23)

I proceed by expressing each of the first three terms that appear in expression (23) above

as a function of the agents’ information acquisition parameters.

As regards the first term, consider an agent k 6= i. Then, applying the parameterization

of message strategies in (2) to agent k and the expression for the variance of tk for the

information acquisition parameter xik in (8), we obtain∫ 1

0

f(τ)

∫ 1

0

βki(mki|τ ;xik)Var[tk|mki;xik]dmki dτ

=

∫ 1

0

f(τ)

∫ 1

0

[
(1− xik)f(mki) + xikI(mki|tk)

]
(1− xik)×

×
[
σ2 + xik(mki − µ)2

]
dmki dτ

=

∫ 1

0

f(τ)
[
(1− xik)(1 + xik − x2

ik)σ2 + x2
ik(1− xik)(τ − µ)2

]
dτ

= [1− x2
ik]σ2.

(24)

As for the second term in expression (23), consider an agent j 6= i. Applying the

parameterization of message strategies in (2) and the expression of the square forecast

error in (16) to agent j, we have∫ 1

0

f(τ)

∫ 1

0

βij(mij|τ ;xji)θ(τ |mij;xji)dmij dτ

=

∫ 1

0

f(τ)

∫ 1

0

[
(1− xji)f(mij) + xjiI(mij|ti)

]
×

×
[
(τ − µ)2 + x2

ji(mij − µ)2 − 2xji(τ − µ)(mij − µ)
]
dmij dτ

=

∫ 1

0

f(τ)
[
(1− xji)x

2
jiσ

2 + [(1− xji) + xji + x3
ji − 2x2

ji](τ − µ)2
]
dτ

=
[
x2

ji − x3
ji + 1− xji + xji + x3

ji − 2x2
ji

]
σ2 =

[
1− x2

ji

]
σ2.

(25)
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As for the third term in expression (23), consider two agents, j 6= i and k 6= i, such

that j 6= k. Application of the belief Bayesian updating rule specified in (BU) to agent i

with respect to agent k’s type, together with the expression of the square forecast error

in (16), gives us∫ 1

0

λik(tk|mki;xik)θ(tk|mkj;xjk)dtk

=

∫ 1

0

[
(1− xik)f(tk) + xikI(mki|tk)

][
(tk − µ)2 + x2

jk(mkj − µ)2 − 2xjk(tk − µ)(mkj − µ)
]
dtk

= (1− xik)σ2 + x2
jk(mkj − µ)2 + xik(mki − µ)2 − 2xikxjk(mki − µ)(mkj − µ).

Next, application of the message strategy specified in (2) to agent k with respect to the

message that he sends to agent j gives us∫ 1

0

βkj(mkj|τ ;xjk)

∫ 1

0

λik(tk|mki;xik)θ(tk|mkj;xjk)dtk dmkj

=

∫ 1

0

[
(1− xjk)f(mkj) + xjkI(mkj|τ)

]
×

×
[
(1− xik)σ2 + x2

jk(mkj − µ)2 + xik(mki − µ)2 − 2xikxjk(mki − µ)(mkj − µ)
]
dmkj

=
[
(1− xik) + (1− xjk)x2

jk

]
σ2 + xik(mki − µ)2 + x3

jk(τ − µ)2 − 2xikx
2
jk(mki − µ)(τ − µ).

Furthermore, application of the message strategy specified in (2) to agent k with respect

to the message that he sends to agent i yields∫ 1

0

βki(mki|τ ;xik)

∫ 1

0

βkj(mkj|τ ;xjk)

∫ 1

0

λik(tk|mki;xik)θ(tk|mkj;xjk)dtk dmkj dmki

=

∫ 1

0

[
(1− xik)f(mki) + xikI(mki|τ)

]
×

×
[
(1− xik) + (1− xjk)x2

jk

]
σ2 + xik(mki − µ)2 + x3

jk(τ − µ)2 − 2xikx
2
jk(mki − µ)(τ − µ)

]
dmki

=
[
(1− xik) + (1− xjk)x2

jk + (1− xik)xik

]
σ2 +

[
x3

jk + x2
ik − 2x2

ikx
2
jk

]
(τ − µ)2.

Thus, one finally obtains∫ 1

0

f(τ)

∫ 1

0

βki(mki|τ ;xik)

∫ 1

0

βkj(mkj|τ ;xjk)

∫ 1

0

λik(tk|mki;xik)×

× θ(tk|mkj, xjk)dtkdmkjdmkidτ =
[
1 + x2

jk − 2x2
jkx

2
ik

]
σ2.

(26)

Then, by substituting equations (24)-(26) into equation (23), we can rewrite agent i’s

expected payoff in stage 1 as

Vi,1(α̂, λi) =− (1− r)
∑
k 6=i

[
1− x2

ik

]
σ2 − r

n− 1

∑
j 6=i

[
1− x2

ji

]
σ2

− r

n− 1

∑
k 6=i

∑
j 6=i,k

[
1 + x2

jk − 2x2
jkx

2
ik

]
σ2 −

∑
k∈Ni(g)

cxik.
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For k ∈ Ni(g), let φik : [0, 1]→ R be the function defined as

φik(xik) :=
[
(1− r) +

2r

n− 1

∑
j∈Nk(g)\{i}

x2
jk

]
σ2x2

ik − cxik

−
[
(1− r) +

r

n− 1

∑
j∈Nk(g)\{i}

x2
jk

]
σ2.

(27)

Using this, taking into account the fact that, for each i ∈ N , xik = 0 for k /∈ Ni(g) ∪ {i},
and by rearranging terms, we can express agent i’s expected payoff in stage 1 as

Vi,1(α̂, λi) =− (1− r)(n− ni(g)− 1)σ2 − r(n− 2)ni(g)

n− 1
σ2 − r

n− 1

∑
j 6=i

[1− x2
ji]σ

2

− r

n− 1

∑
k/∈Ni(g)∪{i}

∑
j 6=i,k

[1 + x2
jk]σ2 +

∑
k∈Ni(g)

φik(xik).

It follows that the information acquisition strategy x∗i and the corresponding induced

beliefs µ∗i satisfy conditions (SR2) and (SR1) in the definition of IAE, Definition 1, if and

only if, for each k ∈ Ni(g), x∗ik solves the problem:

maxxik∈[0,1] φik(xik).

Given the parabolic shape of the function φik, we obtain that either (i) x∗ik = 0⇔ φik(0) ≥
φik(1)⇔ c ≥ σ2

[
(1− r) + 2r 1

n−1

∑
j∈Nk(g)\{i}(x

∗
jk)2
]
, (ii) x∗ik = 1⇔ φik(1) ≥ φik(0)⇔ c ≤

σ2
[
(1− r) + 2r 1

n−1

∑
j∈Nk(g)\{i}(x

∗
jk)2
]
, or (iii) x∗ik ∈ {0, 1} ⇔ φik(1) = φik(0)

⇔ c = σ2
[
(1− r) + 2r 1

n−1

∑
j∈Nk(g)\{i}(x

∗
jk)2
]
.

The result follows since we considered a generic agent i ∈ N . 2

Proof of Proposition 3. Consider a network g ∈ G. Since the cost of information acquisi-

tion is given by function c : [0, 1]→ R+, we can rewrite equation (20), which gives us the

welfare function evaluated in stage 1, as

W1(x) = −(n− 1)nσ2 +
∑
i∈N

∑
k∈Ni(g)

[x2
ikσ

2 − c(xik)].

Therefore, as shown in the proof of Proposition 1, for each agent i ∈ N and each k ∈ Ni(g),

the problem that the planner faces is:

maxxik∈[0,1] σ2x2
ik − c(xik).

Corner solutions for this problem are ruled out by the assumptions c′(0) = 0 and c′(1) >

2σ2(1 + r) on the shape of the cost function. It follows that xik ∈ (0, 1), for each agent
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i ∈ N and each neighbor k ∈ Ni(g), must hold in each efficient information acquisition

profile. Furthermore, it follows from the assumption c′′(x) > 2σ2(1+r), for each x ∈ [0, 1],

that the set of first order conditions

c′(xik)

xik

= σ2 for each i ∈ N and each k ∈ Ni(g)

characterizes the solution of the planner’s problem for each agent i ∈ N and each neighbor

k ∈ Ni(g), as stated. 2

Proof of Proposition 4. Consider a network g ∈ G and an agent i ∈ N . Let x∗i and µ∗i be,

respectively, an information acquisition strategy and the corresponding induced beliefs

that satisfy conditions (SR2) and (SR1) in the definition of IAE, Definition 1. As shown

in the proof of Proposition 2, for each k ∈ Ni(g), x∗ik must solve the problem:

maxxik∈[0,1] φik(xik).

Now, since the cost of information acquisition function c : [0, 1] → R+, the definition of

function φik, for k ∈ Ni(g) given in expression (27), becomes

φik(xik) :=
[
(1− r) +

2r

n− 1

∑
j∈Nk(g)\{i}

x2
jk

]
σ2x2

ik − c(xik)

−
[
(1− r) +

r

n− 1

∑
j∈Nk(g)\{i}

x2
jk

]
σ2.

From the assumptions c′(0) = 0 and c′(1) > 2σ2(1+r), it follows that x∗ik ∈ (0, 1) for each

k ∈ Ni(g). Furthermore, from the assumption c′′(x) > 2σ2(1 + r) for each x ∈ [0, 1], one

obtains that the optimal information acquisition choice of agent i with respect to each of

his neighbors k ∈ Ni(g) is characterized by the first order condition:

c′(x∗ik)

x∗ik
= 2σ2

[
(1− r) +

2r

n− 1

∑
j∈Nk(g)\{i}

(x∗jk)2
]
.

The result follows since we considered a generic agent i ∈ N . 2
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